
Distributed Hash Table
-In Algorithm Perspective-

Wenguang Liu

Distributed Hash Table

Distributed Hash TableCHAPTER 1. INTRODUCTION 3

Figure 1.1: Example of a DHT mapping filenames to the URLs, which
represent the current location of the files. The items of the DHT are dis-
tributed to the nodes a, b, c, d, and e, and the nodes keep routing pointers
to each other. If an application makes a lookup request to node d to find
out the current location of the file abc.txt, d will route the request to
node a, which will route the request to node e, which can answer the re-
quest since it knows the URL associated with key abc.txt. Note that not
every node needs to store items, e.g. node b.

also used in other contexts as well, such as for building virtual private
networks (VPN). The term structured overlay network is therefore used
to distinguish overlay networks created by DHTs from other overlay net-
works. Figure 1.2 illustrates an overlay network and its corresponding
underlay network.

There have recently been attempts to build overlays that use an under-
lay that provides much less services than the Internet. ROFL [21] replaces
the underlying routing services of the Internet with that of a DHT, while
VRR [20] takes a similar approach for wireless networks.

History of DHTs The first DHTs appeared in 2001, and build on one of
two ideas published in 1997:

• Consistent Hashing, which is a hashing scheme for caching web pages
at multiple nodes, such that the number of cache items needed to be
reshuffled is minimized when nodes are added or removed [85, 73].

Properties:
Scalable
Dispersed items
Scales with dynamism
Self-manage

Node JOIN,
Node LEAVE,
Node FAIL

Operations:
Node management
K/V management
Range query
Group communication

Distributed Hash Table

• Structure
• Centralized
• Decentralized/P2P

• Concept
• Keyspace, e.g. [0, 2%)
• Keyspace Partition, e.g. Consistent Hashing

0

4

26

5

1

3

7

Node

Overlay Networks4 1.1. WHAT IS A DISTRIBUTED HASH TABLE?

Figure 1.2: An overlay network and the underlay network on top of which
the overlay network is built. Messages between the nodes in the overlay
network logically follow the ring topology of the overlay network, but
physically pass through the links and routers that form the underlay net-
work.

• PRR2 or Plaxton Mesh, which is a scheme that enables efficient rout-
ing to the node responsible for a given object, while requiring a
small routing table [113].

Of the initial DHTs, Chord [136] builds on consistent hashing, but
replaces global information at each node with a small routing table and
provides an efficient routing algorithm. Chord has influenced the design
of many other DHTs, such as Koorde [72], EpiChord [83], Chord# [127],
and the Distributed k-ary System (DKS) [5], which this dissertation builds
on.

Similarly, PRR is the basis of the initial DHTs Tapestry [143] and Pastry
[123]. These systems extend the PRR scheme such that it works while
nodes are joining, leaving, and failing.

Content-Addressable Networks (CAN) [116] and P-Grid [2] do not di-
rectly build on any of these ideas, though the latter has some resemblance
to the PRR scheme.

2PRR is derived from the names of the authors – Plaxton, Rajaraman, Richa — who
proposed the scheme [113].

Topic

• Atomic Ring Maintenance
• Routing Maintenance
• Group Communication
• Replication
• Applications

Atomic Ring Maintenance

Atomic Ring MaintenanceCHAPTER 3. ATOMIC RING MAINTENANCE 39

Figure 3.1: Example of inconsistent stabilization.

on the frequency of the stabilization and the size of the successor-list. For
if too many adjacent nodes leave between two stabilizations, there might
not exist another live node in the successor-list of the node that detects
the failure of its successor.

We proceed by a simple example to demonstrate the apparent diffi-
culties in synchronizing a leave to ensure that lookups are unaffected by
leaves. As in Figure 3.2, assume node 5 has 10 as its successor, and node
10 has 15 as its successor. If node 10 wants to leave the system, we have to
ensure that items stored on node 10 are made available to 15, and ensure
that the routing information in the system is updated such that lookups
for identifiers {6, · · · , 10} are forwarded to node 15. This requires that 10
stays in the system at least until 5 has updated its successor pointer and
until 10’s data is made available on 15.

To continue the example, node 15 might want to leave the system at
the same time as node 10. Due to the asynchrony in the system, it might
be that both 10 and 15 concurrently inform their respective predecessor

40 3.2. CONCURRENCY CONTROL

Figure 3.2: Perfect system state before a leave operation.

about their departure and instruct their predecessors to point to their
successors. This might result in node 5 pointing to node 15 even though
both node 10 and 15 have left the system. Node 5 incorrectly points to 15,
and might incorrectly forward lookups to it, leading to a routing failure.

The apparent problems which occur due to joins and leaves can be
overcome by serializing joins and leaves.

3.2 Concurrency Control

As we mentioned earlier, the aim is to maintain a ring. In non-distributed
data structures, the approach often taken is to lock the whole data struc-
ture when adding and removing elements from it. Hence, the list is
guarded against becoming corrupt due to concurrent modifications. This
approach can naı̈vely be applied to our distributed ring. However, the
performance overhead of locking all the nodes becomes large as the size
of the ring grows.

Another approach to avoid inconsistencies due to concurrent modi-
fications of the ring is to acquire three locks, one for the predecessor,
one for the successor, and one for the joining/leaving node. After ac-
quiring the locks, the pointers of the respective nodes can be updated
to allow a node join or leave the ring. Since a join or leave of a node q
only requires changes to the pointers of node q, q’s predecessor, and q’s
successor, attempting to lock those three nodes against concurrent mod-
ifications would solve concurrency related problems. There is, however,
a simpler approach to protect the nodes from concurrent modifications,
which is superior to the solution we just described.

Instead of locking the joining/leaving node, as well as its predecessor
and successor, we now describe a simpler approach which is reducible to
the well known problem of the dining philosophers [37], which we explain
later.

Assume every node i hosts a lock Li, which can only be acquired by at

CHAPTER 2. PRELIMINARIES 35

Algorithm 1 Chord’s periodic stabilization protocol

1: procedure n.Stabilize()
2: p := succ.GetPredecessor()
3: if p ∈ (n, succ) then
4: succ := p
5: end if
6: succ.Notify(n)
7: end procedure

8: procedure n.GetPredecessor()
9: return pred

10: end procedure

11: procedure n.Notify(p)
12: if p ∈ (pred, n] then
13: pred := p
14: end if
15: end procedure

10 and 15 leave concurrently

Atomic Ring Maintenance

• Concurrency Control strategies:
• Lock the whole ring;
• Three locks: predecessor’s lock, successor’s lock, joining/leaving node’s lock;
• Two locks: Joining/leaving node’s own lock, and its’ successor’s lock;

• Used in this paper
• Suffer with Dining philosophers

• Safety
• Liveness
• Asymmetric locking
• Randomized locking: release all locks when timeout.

Atomic Ring Maintenance

• Asymmetric Locking: LockQueue
CHAPTER 3. ATOMIC RING MAINTENANCE 49

Algorithm 2 Asymmetric locking with forwarding

1: procedure n.Join(succ) ◃ Join the ring with succ as successor
2: Leaving :=false ◃ Initialize variable
3: LockQueue.Enqueue(n) ◃ Enqueue request to local lock
4: slock :=GetSuccLock()
5: pred := succ.pred
6: pred.succ := n
7: succ.pred := n
8: LockQueue := succ.LockQueue ◃ Copy successor’s queue
9: LockQueue.Filter((pred, n]) ◃ Keep requests in the range

10: succ.LockQueue.Filter((n, pred]) ◃ Keep requests in the range
11: LockQueue.Dequeue() ◃ Remove local request
12: ReleaseLock(slock)
13: end procedure

14: procedure n.Leave() ◃ Leave the ring
15: if n > succ then ◃ Asymmetric Locking
16: slock :=GetSuccLock()
17: Leaving := true ◃ Enable forwarding
18: LockQueue.Enqueue(n) ◃ Enqueue request to local lock
19: else
20: Leaving := true ◃ Enable forwarding
21: LockQueue.Enqueue(n) ◃ Enqueue request to local lock
22: slock :=GetSuccLock()
23: end if
24: pred.succ := succ
25: succ.pred := pred
26: LockQueue.Dequeue() ◃ Remove local requst
27: ReleaseLock(slock)
28: end procedure

29: procedure n.GetSuccLock()
30: sendto succ.AcqLock(n)
31: receive LockGranted() from m
32: return m ◃ Return identity of lock host
33: end procedure

34: procedure n.ReleaseLock(dest)
35: sendto dest.FreeLock()
36: end procedure

CHAPTER 3. ATOMIC RING MAINTENANCE 49

Algorithm 2 Asymmetric locking with forwarding

1: procedure n.Join(succ) ◃ Join the ring with succ as successor
2: Leaving :=false ◃ Initialize variable
3: LockQueue.Enqueue(n) ◃ Enqueue request to local lock
4: slock :=GetSuccLock()
5: pred := succ.pred
6: pred.succ := n
7: succ.pred := n
8: LockQueue := succ.LockQueue ◃ Copy successor’s queue
9: LockQueue.Filter((pred, n]) ◃ Keep requests in the range

10: succ.LockQueue.Filter((n, pred]) ◃ Keep requests in the range
11: LockQueue.Dequeue() ◃ Remove local request
12: ReleaseLock(slock)
13: end procedure

14: procedure n.Leave() ◃ Leave the ring
15: if n > succ then ◃ Asymmetric Locking
16: slock :=GetSuccLock()
17: Leaving := true ◃ Enable forwarding
18: LockQueue.Enqueue(n) ◃ Enqueue request to local lock
19: else
20: Leaving := true ◃ Enable forwarding
21: LockQueue.Enqueue(n) ◃ Enqueue request to local lock
22: slock :=GetSuccLock()
23: end if
24: pred.succ := succ
25: succ.pred := pred
26: LockQueue.Dequeue() ◃ Remove local requst
27: ReleaseLock(slock)
28: end procedure

29: procedure n.GetSuccLock()
30: sendto succ.AcqLock(n)
31: receive LockGranted() from m
32: return m ◃ Return identity of lock host
33: end procedure

34: procedure n.ReleaseLock(dest)
35: sendto dest.FreeLock()
36: end procedure

Atomic Ring Maintenance

• Lookup consistency in the presence of JOINs: JoinForward

56 3.3. LOOKUP CONSISTENCY

Algorithm 4 Pointer updates during joins

1: event n.UpdateJoin() from n ◃ Assuming succ is correct
2: sendto succ.UpdatePred()
3: end event

4: event n.UpdatePred() from m
5: JoinForward :=true ◃ Forwarding Enabled
6: sendto m.JoinPoint(pred) ◃ Join Point
7: oldpred := pred
8: pred := m
9: end event

10: event n.JoinPoint(p) from m
11: pred := p
12: succ := m
13: sendto pred.UpdateSucc()
14: end event

15: event n.UpdateSucc() from m
16: sendto succ.StopForwarding()
17: succ := m
18: end event

19: event n.StopForwarding() from m
20: JoinForward :=false ◃ Forwarding Disabled
21: sendto pred.Finish()
22: end event

56 3.3. LOOKUP CONSISTENCY

Algorithm 4 Pointer updates during joins

1: event n.UpdateJoin() from n ◃ Assuming succ is correct
2: sendto succ.UpdatePred()
3: end event

4: event n.UpdatePred() from m
5: JoinForward :=true ◃ Forwarding Enabled
6: sendto m.JoinPoint(pred) ◃ Join Point
7: oldpred := pred
8: pred := m
9: end event

10: event n.JoinPoint(p) from m
11: pred := p
12: succ := m
13: sendto pred.UpdateSucc()
14: end event

15: event n.UpdateSucc() from m
16: sendto succ.StopForwarding()
17: succ := m
18: end event

19: event n.StopForwarding() from m
20: JoinForward :=false ◃ Forwarding Disabled
21: sendto pred.Finish()
22: end event

Atomic Ring Maintenance

• Lookup consistency in the presence of Leaves: LeaveForward

58 3.3. LOOKUP CONSISTENCY

As seen by Figure 3.5, the leaving node q starts by setting its boolean
LeaveForward variable to true and sends a LeavePoint message to its suc-
cessor r. This constitutes a leave point, which represents that responsibility
of the identifiers in the range (p, q] are instantaneously transferred from
q to r. The rest of the algorithm is straightforward, as node r updates its
predecessor pointer to point to p and informs p to update its successor
pointer to point to r. Thereafter, node p sends a StopForwarding mes-
sage to q. Node q sets its special LeaveForward variable to false upon
receipt of StopForwarding.

The leaving node knows the pointers have been updated correctly
when it receives StopForwarding, and can safely release any held locks
and leave the system.

Algorithm 5 Pointer updates during leaves

1: event n.UpdateLeave() from n
2: LeaveForward := true ◃ Forwarding Enabled
3: sendto succ.LeavePoint(pred)
4: end event

5: event n.LeavePoint(p) from m
6: pred := p
7: sendto pred.UpdateSucc()
8: end event

9: event n.UpdateSucc() from m
10: sendto succ.StopForwarding()
11: succ := m
12: end event

13: event n.StopForwarding() from m
14: LeaveForward :=false ◃ Forwarding Disabled
15: end event

As with the join case, any node in the system might do a lookup while
nodes are leaving. During a leave, however, node p’s successor pointer
might point to either node r or node q. We would like it to point to q
before the leave point, and to r after the leave point. The former case
is ensured automatically assuming p’s successor pointer was correctly

Atomic Ring Maintenance

• Combine together

CHAPTER 3. ATOMIC RING MAINTENANCE 61

the message along the ring to its successor.

Algorithm 6 Lookup algorithm

1: event n.Lookup(id, src) from m
2: if JoinForward = true and m = oldpred then
3: sendto pred.Lookup(id, src) ◃ Redirect Message
4: else if LeaveForward = true then
5: sendto succ.Lookup(id, src) ◃ Redirect Message
6: else if pred ̸= nil and id ∈ (pred, n] then
7: sendto src.LookupDone(n)
8: else
9: sendto succ.Lookup(id, src)

10: end if
11: end event

Proving Correctness of Lookup Consistency Our consistency require-
ment will be that at any given time, every identifier will be under the
responsibility of exactly one node.

More formally, we say that the configuration of the system at any given
discretized time, is the nodes in the system and their succ, pred pointers
as well as their variables JoinForward, LeaveForward, and oldpred.

We now construct a function, which given a configuration, mimics the
lookup operation of the system. For any given configuration of the system
δ, we define a function called lookupδ that takes two identifiers k and i,
where k is some arbitrary destination identifier and i is the identifier of a
node in δ, and returns the identifier of some node in δ. We do not provide
the function, but it looks almost identical to Algorithm 6, except that the
message passing is replaced with recursive calls.

Our consistency requirement can therefore be defined as:

if lookupδ(k, i) = p and lookupδ(k, j) = q, then p = q

The above requirement ensures that if the system state is frozen at any
given instant, lookups for any identifier will return the same responsible
node regardless of the node at which the lookup is initiated.

Theorem 3.3.1. The lookup algorithm satisfies the consistency requirement.

Routing Maintenance

Routing Maintenance

• Extension to the ring: pred, succ, successor-list
84 4.1. ADDITIONAL POINTERS AS IN CHORD

Figure 4.1: Simple extension of the ring with log2(n) extra pointers. The
filled circles indicate a node. The figure shows node 15’s additional point-
ers.

simple extension is to let node p also point to the successor of p ⊕ 2, p ⊕
22, · · · , p ⊕ 2L−1, where L = log2(N), where N is the size of the identifier
space.

Figure 4.1 shows a system with an identifier space {0, 1, · · · , 24 − 1}
(L = 4) and nodes 0, 2, 10, 15. The figure shows node 15’s additional
pointers. Node 15 points to the successors of the identifiers 15 ⊕ 20 = 0,
15⊕ 21 = 1, 15⊕ 22 = 3, and 15⊕ 23 = 7. Note that several pointers might
have the same successor, e.g. node 10 is the successor of both identifier 3
and 7 in Figure 4.1.

A node therefore has a routing table of size log2(N), where N is the
size of the identifier space. However, since nodes are spread uniformly
across the ring, it can be shown that only log2(n) entries are unique,
where n is the number of nodes in the system. The number of unique
pointers is significant, as it denotes the number of routing neighbors that
need topology maintenance (discussed in Section 4.5).

84 4.1. ADDITIONAL POINTERS AS IN CHORD

Figure 4.1: Simple extension of the ring with log2(n) extra pointers. The
filled circles indicate a node. The figure shows node 15’s additional point-
ers.

simple extension is to let node p also point to the successor of p ⊕ 2, p ⊕
22, · · · , p ⊕ 2L−1, where L = log2(N), where N is the size of the identifier
space.

Figure 4.1 shows a system with an identifier space {0, 1, · · · , 24 − 1}
(L = 4) and nodes 0, 2, 10, 15. The figure shows node 15’s additional
pointers. Node 15 points to the successors of the identifiers 15 ⊕ 20 = 0,
15⊕ 21 = 1, 15⊕ 22 = 3, and 15⊕ 23 = 7. Note that several pointers might
have the same successor, e.g. node 10 is the successor of both identifier 3
and 7 in Figure 4.1.

A node therefore has a routing table of size log2(N), where N is the
size of the identifier space. However, since nodes are spread uniformly
across the ring, it can be shown that only log2(n) entries are unique,
where n is the number of nodes in the system. The number of unique
pointers is significant, as it denotes the number of routing neighbors that
need topology maintenance (discussed in Section 4.5).

Routing Maintenance

• Lookup: strategy-Recursive Lookup86 4.2. LOOKUP STRATEGIES

Figure 4.2: An illustration of recursive lookup. When a node receives a
request, it either has the answer and returns it, or it asks its next hop for
the answer and waits for a reply before responding to the requester.

that takes the destination identifier and returns true if the current node
has the result of the lookup and wants to terminate the lookup. Other-
wise the boolean function returns false. The next hop(i) function takes
the destination identifier and returns the next hop node in the routing
process. Most importantly, if terminate(i) is true, then next hop(i) re-
turns the address of the node responsible for i.

4.2.1 Recursive Lookup

When performing a recursive lookup, each node in the routing process
recursively asks the next hop node for the node responsible for the des-
tination identifier and returns whatever the next hop node returns. This
process is described by Algorithm 12 and illustrated by Figure 4.2.

The obvious disadvantage of this approach is that every node in the
path to the destination will be visited twice. Once as the query is being
forwarded, and once when the result is being passed back. Hence, the
probability of one of the nodes in the path leaving or failing increases,
compared to iterative or transitive lookup.

If recursive lookup is combined with other operations, it can have
performance drawbacks. For example, recursive lookup can be combined

CHAPTER 4. ROUTING AND MAINTENANCE 87

with a DHT get operation, such that it returns the value associated with
the identifier rather than returning the responsible node for the identifier.
In this case, the value of the get operation has to travel through every
node on the lookup path. In some applications, the values might be of
substantial size and will considerably increase the overall latency and
bandwidth consumption.

Algorithm 12 Recursive lookup algorithm

1: procedure n.lookup(i, op)
2: if terminate(i) then
3: p :=next hop(i)
4: res := p.op(i) ◃ op could carry parameters
5: return res
6: else
7: m :=next hop(i)
8: return m.lookup(i, op)
9: end if

10: end procedure

There are, however, several advantages with recursive lookup com-
pared to the other lookup strategies. The advantages have to do with
the fact that nodes only communicate with the neighbors in their routing
tables. Hence, nodes can use connection-oriented communication, such
as TCP/IP, to maintain a connection with every routing neighbor. Hence,
the lookup will be passed through connections which have been estab-
lished in advance. This can reduce the latency of a lookup, as the cost
of connection establishment is avoided. The cost of connection establish-
ment includes detecting and rectifying the situation when a connection to
another node cannot be established due to outdated references, firewalls,
or NATs. Furthermore, sometimes a connection cannot be established to
another node due to non-transitivity in the network, whereby a node p
can establish a connection with q, and q can establish a connection with
r, but node p cannot directly establish a connection with node r [48].2

In contrast to iterative lookup, the perhaps most important advantage
of recursive lookup is that the system can employ proximity neighbor

2On the Internet, this phenomenon could be caused because one of the routers on
the route between p and r is malfunctioning.

Routing Maintenance

• Lookup: strategy-Iterative Lookup
CHAPTER 4. ROUTING AND MAINTENANCE 89

Figure 4.3: An illustration of iterative lookup. The initiator directly con-
tacts every node on the path of the query until it receives the answer.

the lookup. The initiator might receive redundant lookup responses due
to premature timeouts. Redundant lookup responses can be filtered using
the same method as described above. One disadvantage of this approach
is that it is difficult to estimate the expire time for the timer, as it depends
on many variables, such as the system size. Nevertheless, this approach
follows the end-to-end argument [125], which is how reliability is imple-
mented on the Internet.

4.2.2 Iterative Lookup

With iterative lookup, the initiator contacts the first hop in the lookup
path and receives back the address of the second hop node. Thereafter it
contacts the second hop node and asks it for the third hop node, and so
on, until it finds the node responsible for the destination identifier. This
process is described by Algorithm 13 and illustrated by Figure 4.3.

The advantages and disadvantages of iterative routing are comple-
mentary to those of recursive routing. In contrast to recursive rout-
ing, nodes not only communicate with nodes in their routing table, but
with many other nodes as well. There are several drawbacks to this, in-
cluding problems related to establishing a connection or non-transitivity.
Furthermore, proximity neighbor selection becomes pointless, because
node p might not have a low latency to node r even though node p has
low latency to q and q has low latency to r. It is, however, possible to

90 4.2. LOOKUP STRATEGIES

Algorithm 13 Iterative lookup algorithm

1: procedure n.lookup(i, op)
2: m := n
3: while not m.terminate(i) do
4: m := m.next hop(i)
5: end while
6: p := m.next hop(i)
7: return p.op(i)
8: end procedure

achieve some proximity awareness by using synthetic coordinates (see
Section 1.2.2), which enables node p to approximate its latency to any
node r.

One advantage of iterative routing is that the initiator can make paral-
lel lookups, using multiple paths to the node responsible for the destina-
tion identifier. This is done in Kademlia [101] and EpiChord [83]. Hence,
the initiator may be connected to several first hop nodes, and from them
receive a list of candidate second hop nodes, from which it chooses a sub-
set to communicate to, and so on. This way, the initiator can ensure that
there is only a constant number of nodes involved in any parallel lookup.
This approach has two advantages. First, only the nodes that first re-
spond are chosen, which improves the latency. Second, it is resilient to
individual node failures. Parallel lookups are generally not possible with
the two other lookup strategies. We show, however, how it can be done
in conjunction with replication (see Chapter 6).

Reliable Iterative Lookup

It is straightforward to implement reliable lookup with iterative routing.
Since the initiator is involved in every step of the lookup, it can use a fail-
ure detector in every step of the algorithm. If a node fails, the initiator can
reissue a lookup to another node. Note that the failure detector can use a
timer on the expected lookup response. Unlike the failure detector used
for recursive lookup, it is not necessary to use a heartbeat mechanism in
the implementation of the failure detector. Redundant messages, which
are generated due to the inaccuracy of failure detectors, can be avoided
using the same technique as we described for implementing reliable re-

Routing Maintenance

• Lookup: strategy-Transitive Lookup
CHAPTER 4. ROUTING AND MAINTENANCE 91

Figure 4.4: An illustration of transitive lookup. Every node delegates the
responsibility of finding the responsible node to its next hop node. The
node that knows the answer directly responds back to the initiator.

cursive lookup (see Section 4.2.1).

4.2.3 Transitive Lookup

Transitive lookup is similar to recursive lookup, but rather than passing
back the result along the same path as the lookup, the result is directly
sent back from the node terminating the lookup to the initiating node.
This process is described by Algorithm 14, which partly contains event-
based communication. Figure 4.4 illustrates a transitive lookup.

Transitive lookup is a hybrid of recursive and iterative lookup. It
shares the advantage of recursive routing that nodes only communicate
with nodes they are pointing to. An exception is the last step, in which
the responsible node returns to the initiating node. This last step can
suffer from all the problems we mentioned with iterative lookup. For
example, NATs, firewalls, or non-transitivity in the network, can make
communication with the initiating node impossible.

Aside from potential problems with the last routing step, transitive
lookup benefits if proximity neighbor selection is used. Furthermore,
transitive lookup avoids the latency and potential failures which recur-
sive lookup suffers from when passing the result back along the lookup
path. If transitive lookup is combined with a DHT get operation, it will

92 4.2. LOOKUP STRATEGIES

Algorithm 14 Transitive lookup algorithm

1: procedure n.lookup(i, op)
2: sendto n.lookup aux(n, i, op)
3: receive lookup res(r) from q
4: return r
5: end procedure

6: event n.lookup aux(q, i, op) from m
7: if terminate(i) then
8: p := next hop(i)
9: sendto p.lookup fin(q, i, op)

10: else
11: p :=next hop(i)
12: sendto p.lookup aux(q, i, op)
13: end if
14: end event

15: event n.lookup fin(q, i, op) from m
16: r := op(i)
17: sendto q.lookup res(r)
18: end event

Routing Maintenance

• Greedy Lookup Algorithm
• rt(i): sucessors sorted by routing distance asc.

94 4.3. GREEDY LOOKUP ALGORITHM

Algorithm 15 Greedy lookup

1: procedure n.terminate(i)
2: return i ∈ (n, succ]
3: end procedure

1: procedure n.next hop(i)
2: if terminate(i) then
3: return succ
4: else
5: r := succ
6: for j := 1 to K do ◃ Node has K pointers
7: if rt(j) ∈ (n, i) then
8: r := rt(j)
9: end if

10: end for
11: return r
12: end if
13: end procedure

Group Communication

Group Communication

• Motivation
• Exactly matchàWildcard expression

• Desirable properties
• Termination
• Coverage,

• All the designated nodes that are reachable should receive the message
• Non-redundancy

• Never receive a message more than once.

Group Communication

• Broadcast algorithms – simple broadcast

118 5.4. BROADCAST ALGORITHMS

tee further partitions the part to which it has been delegated into pieces
which it further delegates to other nodes. This is recursively repeated
until no node has any routing pointers left in the interval it has been
delegated, whereby the algorithm terminates.

Algorithm 19 Simple broadcast algorithm

1: event n.StartSimpleBcast(msg) from app
2: sendto n.SimpleBcast(msg, n) ◃ Local message to itself
3: end event

1: event n.SimpleBcast(msg, limit) from m
2: Deliver(msg) ◃ Deliver msg to application
3: for i := M downto 1 do ◃ Node has M unique pointers
4: if u(i) ∈ (n, limit) then
5: sendto u(i).SimpleBcast(msg, limit)
6: limit := u(i)
7: end if
8: end for
9: end event

We can now prove that the algorithm is correct given a static network.

Theorem 5.4.1. The simple broadcast algorithm is correct.

Proof. Termination. The algorithm only forwards a message to a node u(i) if
u(i) is in the interval (n, limit). Hence, the beginning of the interval strictly
increases (modulo arithmetic) toward limit each time a message is forwarded.
Similarly, the end of the interval (limit), either stays the same or decreases toward
n. Hence, each time a node sends a message to some other node, it delegates to it a
strict subset of the interval that itself was responsible for. Since the intervals are
discrete and have a finite size, eventually there is either no node in the interval
or the interval is empty. Hence, eventually the algorithm terminates.

Non-redundancy. We have shown that each node delegates a subset of its
own interval to any node it forwards to. Hence, a tree is induced by the broadcast,
where the initiator is the root of the tree, and where a node is the immediate
parent of all the nodes it directly sends a message to. We show that every node
delegates non-overlapping intervals to all its children. This is is a consequence
of the fact that the pointers at any given node are unique and a node never

Group Communication

• Broadcast algorithms – simple broadcast with feedback
122 5.4. BROADCAST ALGORITHMS

Algorithm 20 Simple broadcast with feedback algorithm

1: event n.StartBcast(msg) from app
2: sendto n.Bcast(msg, n) ◃ Local message to itself
3: end event

1: event n.Bcast(msg, limit) from m
2: FB := Deliver(msg) ◃ Deliver msg and get set of feedback
3: par := n
4: Ack := ∅

5: for i := M downto 1 do ◃ Node has M unique pointers
6: if u(i) ∈ (n, limit) then
7: sendto u(i).Bcast(msg, limit)
8: Ack := Ack ∪ {u(i)}
9: limit := u(i)

10: end if
11: end for
12: if Ack = ∅ then
13: sendto par.BcastResp(FB)
14: end if
15: end event

1: event n.BcastResp(F) from m
2: if m = n then
3: sendto app.BcastTerm(FB)
4: else
5: Ack := Ack − {m}
6: FB := FB ∪ F
7: if Ack = ∅ then
8: sendto par.BcastResp(FB)
9: end if

10: end if
11: end event

122 5.4. BROADCAST ALGORITHMS

Algorithm 20 Simple broadcast with feedback algorithm

1: event n.StartBcast(msg) from app
2: sendto n.Bcast(msg, n) ◃ Local message to itself
3: end event

1: event n.Bcast(msg, limit) from m
2: FB := Deliver(msg) ◃ Deliver msg and get set of feedback
3: par := n
4: Ack := ∅

5: for i := M downto 1 do ◃ Node has M unique pointers
6: if u(i) ∈ (n, limit) then
7: sendto u(i).Bcast(msg, limit)
8: Ack := Ack ∪ {u(i)}
9: limit := u(i)

10: end if
11: end for
12: if Ack = ∅ then
13: sendto par.BcastResp(FB)
14: end if
15: end event

1: event n.BcastResp(F) from m
2: if m = n then
3: sendto app.BcastTerm(FB)
4: else
5: Ack := Ack − {m}
6: FB := FB ∪ F
7: if Ack = ∅ then
8: sendto par.BcastResp(FB)
9: end if

10: end if
11: end event

Group Communication

• Bulk Operations,
• To designated nodes with identifier in Bulk Set I.

CHAPTER 5. GROUP COMMUNICATION 125

Algorithm 21 Bulk operation algorithm

1: event n.Bulk(I, msg) from m
2: if n ∈ I then
3: Deliver(msg) ◃ Deliver msg to application
4: end if
5: limit := n
6: for i := M downto 1 do ◃ Node has M unique pointers
7: J := [u(i), limit)
8: if I ∩ J ≠ ∅ then

9: sendto u(i).Bulk(I ∩ J, msg)
10: I := I − J ◃ Same as I := I − (I ∩ J)
11: limit := u(i)
12: end if
13: end for
14: end event

Figure 5.5 shows an example of how the bulk message disseminates
in the system depicted by Figure 5.3. Node 1 initiates the algorithm, and
wishes to broadcast to all nodes in the interval [40, 45]. Note that a bulk
message is sent to node 27 with the responsibility of covering the interval
[30, 30]. This might seem unnecessary as node 27 is only a forwarder that
does not deliver the message to the application layer, nor does it forward
the message to any other node. Nevertheless, node 23 which delegated
the interval [30, 30] to node 27, has to ensure that it covers all nodes in
the region [30, 37] and does not know whether a node with identifier 30
exists or not. Therefore it delegates that interval to node 27, which knows
that no such node exists.

5.5.2 Bulk Operations with Feedbacks

Algorithm 22 shows the algorithm for doing bulk operation with feed-
back from all the nodes with identifiers in a prescribed bulk set I.

In the simple broadcast with feedback, the nodes that are merely for-
warding the message will not provide any feedback to the initiator. Nev-
ertheless, feedback on its way back to the initiator might have to pass
through such forwarders, hence forwarding nodes should be placed in
the waiting Ack set.

Group Communication

• Bulk Operations with feedback
126 5.5. BULK OPERATIONS

Algorithm 22 Bulk operation with feedback algorithm

1: event n.BulkFeed(I, msg) from m
2: if n ∈ I then
3: FB := Deliver(msg) ◃ Deliver and get set of feedback
4: else

5: FB := ∅ ◃ No feedback
6: end if
7: par := m
8: Ack := ∅

9: limit := n
10: for i := M downto 1 do ◃ Node has M unique pointers
11: J := [u(i), limit)
12: if I ∩ J ≠ ∅ then
13: sendto u(i).BulkFeed(I ∩ J, msg)
14: I := I − J ◃ Same as I := I − (I ∩ J)
15: Ack := Ack ∪ {u(i)}
16: limit := u(i)
17: end if
18: end for
19: if Ack = ∅ then
20: sendto par.BulkResp(FB)
21: end if
22: end event

1: event n.BulkResp(F) from m
2: if m = n then
3: sendto app.BulkFeedTerm(FB)
4: else
5: Ack := Ack − {m}
6: FB := FB ∪ F
7: if Ack = ∅ then
8: sendto par.BulkResp(FB)
9: end if

10: end if
11: end event

126 5.5. BULK OPERATIONS

Algorithm 22 Bulk operation with feedback algorithm

1: event n.BulkFeed(I, msg) from m
2: if n ∈ I then
3: FB := Deliver(msg) ◃ Deliver and get set of feedback
4: else

5: FB := ∅ ◃ No feedback
6: end if
7: par := m
8: Ack := ∅

9: limit := n
10: for i := M downto 1 do ◃ Node has M unique pointers
11: J := [u(i), limit)
12: if I ∩ J ≠ ∅ then
13: sendto u(i).BulkFeed(I ∩ J, msg)
14: I := I − J ◃ Same as I := I − (I ∩ J)
15: Ack := Ack ∪ {u(i)}
16: limit := u(i)
17: end if
18: end for
19: if Ack = ∅ then
20: sendto par.BulkResp(FB)
21: end if
22: end event

1: event n.BulkResp(F) from m
2: if m = n then
3: sendto app.BulkFeedTerm(FB)
4: else
5: Ack := Ack − {m}
6: FB := FB ∪ F
7: if Ack = ∅ then
8: sendto par.BulkResp(FB)
9: end if

10: end if
11: end event

Group Communication

• Bulk Owner Operations

CHAPTER 5. GROUP COMMUNICATION 129

Algorithm 24 Bulk owner operation algorithm

1: event n.StartBulkOwn(I, msg) from m
2: sendto n.BulkOwn(I, I, n, msg) ◃ Local message to itself
3: end event

1: event n.BulkOwn(I, R, next, msg) from m
2: MS := R ∩ (u(M), n] ◃ u(M) is same as pred
3: if MS ≠ ∅ then
4: Deliver(msg, MS) ◃ App is responsible for ids in MS
5: end if
6: limit := n
7: lnext := next
8: sentsucc :=false
9: for i := M downto 1 do ◃ Node has M unique pointers

10: J := (u(i), limit]
11: if I ∩ J ≠ ∅ then
12: K := (u(i − 1), u(i)]
13: sendto u(i).BulkOwn(I ∩ J, I ∩ K, lnext, msg)
14: I := I − J ◃ Same as I := I − (I ∩ J)
15: limit := u(i)
16: lnext := u(i)
17: if i = 1 then
18: sentsucc :=true
19: end if
20: end if
21: end for
22: J := (n, u(1)]
23: if I ∩ J ≠ ∅ and sentsucc = false and next ≠ u(1) then
24: sendto u(1).BulkOwn(∅, I ∩ J, limit, msg)
25: end if
26: end event

CHAPTER 5. GROUP COMMUNICATION 129

Algorithm 24 Bulk owner operation algorithm

1: event n.StartBulkOwn(I, msg) from m
2: sendto n.BulkOwn(I, I, n, msg) ◃ Local message to itself
3: end event

1: event n.BulkOwn(I, R, next, msg) from m
2: MS := R ∩ (u(M), n] ◃ u(M) is same as pred
3: if MS ≠ ∅ then
4: Deliver(msg, MS) ◃ App is responsible for ids in MS
5: end if
6: limit := n
7: lnext := next
8: sentsucc :=false
9: for i := M downto 1 do ◃ Node has M unique pointers

10: J := (u(i), limit]
11: if I ∩ J ≠ ∅ then
12: K := (u(i − 1), u(i)]
13: sendto u(i).BulkOwn(I ∩ J, I ∩ K, lnext, msg)
14: I := I − J ◃ Same as I := I − (I ∩ J)
15: limit := u(i)
16: lnext := u(i)
17: if i = 1 then
18: sentsucc :=true
19: end if
20: end if
21: end for
22: J := (n, u(1)]
23: if I ∩ J ≠ ∅ and sentsucc = false and next ≠ u(1) then
24: sendto u(1).BulkOwn(∅, I ∩ J, limit, msg)
25: end if
26: end event

Group Communication

• Fault-tolerance
• Use timeouts to detect node failure.

• Efficient overlay multicast
• Multicast-Group: creating, joining, leaving.
• IP multicast integration

Replication

Replication

• Symmetric replication scheme
• the identifier space is partitioned into N/f equivalence classes,

• identifiers in an equivalence class are all associated with each other
• if the identifier i is associated with the set of identifiers r1, ...,rf, then the

identifier rx, for 1 ≤ x ≤ f , is associated with the identifiers r1, ...,rf as well.CHAPTER 6. REPLICATION 145

Figure 6.2: The identifiers associated with each identifier in a system with
an identifier space of size N = 16 and a replication factor of f = 2. The
identifiers in the circles represent r(i, 1) while the identifiers outside the
circles represent r(i, 2).

store all of the items 0, 4, 8, and 12. Hence, to retrieve item 0, a query can
be sent to any of the nodes responsible for the items 0, 4, 8, and 12.

For the symmetry requirement to always be true, it is required that
the replication factor f divides the size of the identifier space N. We find
this reasonable as the size of the successor-list, as well as N, are constants
in most systems.

6.2.3 Algorithms

We now give a description of all algorithms. The algorithms will need
to be slightly modified to fit a system with a different definition of re-
sponsibility, but we assume that each item with identifier i is stored at
the successor of i.

Each node in the system has all its items stored in a two-dimensional
(f , N)-array denoted localHashTable. The first dimension of the array rep-

144 6.2. THE SYMMETRIC REPLICATION SCHEME

ciated with identifier j, then the node responsible for item i should store
both items i and j. Similarly, the node responsible for item j should store
both items i and j.

Formally, each identifier in the system is associated with a set of f
distinct identifiers such that the following always holds: if the identifier i
is associated with the set of identifiers r1, ..., r f , then the identifier rx, for
1 ≤ x ≤ f , is associated with the identifiers r1, ..., r f as well.

Put differently, the identifier space is partitioned into N
f equivalence

classes such that identifiers in an equivalence class are all associated with
each other. Any such partition will work, but for simplicity we use the
congruence classes modulo m, where N is the size of the identifier space
and m = N

f for f replicas.

We now explain how each identifier i is associated to f other iden-
tifiers to achieve replication degree f . Let F = {1, ..., f}, then iden-
tifier i is associated to the f different identifiers given by the function
r : I ×F → I defined as:

r(i, x) = i ⊕ (x − 1)
N

f

Figure 6.2 shows how identifiers are associated in an identifier space
of size N = 16 and a replication factor f = 2. Hence, identifiers form
equivalence classes modulo m = 8, i.e., identifier 1 and 9 are in the same
equivalence class since 1 ≡ 9(mod 8). The identifiers in the circles repre-
sent r(i, 1), while the identifiers outside the circles represent r(i, 2). Note
that the association of identifiers is independent from the nodes present
in the system.

Nodes replicate data as follows. In a system without any replication,
each item with identifier i is stored at the responsible node, which we
take to be the successor of item i, but other definitions of responsibility
will work as well1. Symmetric replication is achieved by having the re-
sponsible node of every identifier i storing every item with an identifier
associated with i. Hence, to find an item with identifier i, a request can
be made for any of the identifiers associated with i.

For example, if the identifier 0 is associated with the identifiers 0, 4,
8, and 12, any node responsible for any of the items 0, 4, 8, or 12 has to

1An item with identifier i can be stored at the closest predecessor of i, or at whichever
node is closest in the identifier space.

144 6.2. THE SYMMETRIC REPLICATION SCHEME

ciated with identifier j, then the node responsible for item i should store
both items i and j. Similarly, the node responsible for item j should store
both items i and j.

Formally, each identifier in the system is associated with a set of f
distinct identifiers such that the following always holds: if the identifier i
is associated with the set of identifiers r1, ..., r f , then the identifier rx, for
1 ≤ x ≤ f , is associated with the identifiers r1, ..., r f as well.

Put differently, the identifier space is partitioned into N
f equivalence

classes such that identifiers in an equivalence class are all associated with
each other. Any such partition will work, but for simplicity we use the
congruence classes modulo m, where N is the size of the identifier space
and m = N

f for f replicas.

We now explain how each identifier i is associated to f other iden-
tifiers to achieve replication degree f . Let F = {1, ..., f}, then iden-
tifier i is associated to the f different identifiers given by the function
r : I ×F → I defined as:

r(i, x) = i ⊕ (x − 1)
N

f

Figure 6.2 shows how identifiers are associated in an identifier space
of size N = 16 and a replication factor f = 2. Hence, identifiers form
equivalence classes modulo m = 8, i.e., identifier 1 and 9 are in the same
equivalence class since 1 ≡ 9(mod 8). The identifiers in the circles repre-
sent r(i, 1), while the identifiers outside the circles represent r(i, 2). Note
that the association of identifiers is independent from the nodes present
in the system.

Nodes replicate data as follows. In a system without any replication,
each item with identifier i is stored at the responsible node, which we
take to be the successor of item i, but other definitions of responsibility
will work as well1. Symmetric replication is achieved by having the re-
sponsible node of every identifier i storing every item with an identifier
associated with i. Hence, to find an item with identifier i, a request can
be made for any of the identifiers associated with i.

For example, if the identifier 0 is associated with the identifiers 0, 4,
8, and 12, any node responsible for any of the items 0, 4, 8, or 12 has to

1An item with identifier i can be stored at the closest predecessor of i, or at whichever
node is closest in the identifier space.

144 6.2. THE SYMMETRIC REPLICATION SCHEME

ciated with identifier j, then the node responsible for item i should store
both items i and j. Similarly, the node responsible for item j should store
both items i and j.

Formally, each identifier in the system is associated with a set of f
distinct identifiers such that the following always holds: if the identifier i
is associated with the set of identifiers r1, ..., r f , then the identifier rx, for
1 ≤ x ≤ f , is associated with the identifiers r1, ..., r f as well.

Put differently, the identifier space is partitioned into N
f equivalence

classes such that identifiers in an equivalence class are all associated with
each other. Any such partition will work, but for simplicity we use the
congruence classes modulo m, where N is the size of the identifier space
and m = N

f for f replicas.

We now explain how each identifier i is associated to f other iden-
tifiers to achieve replication degree f . Let F = {1, ..., f}, then iden-
tifier i is associated to the f different identifiers given by the function
r : I ×F → I defined as:

r(i, x) = i ⊕ (x − 1)
N

f

Figure 6.2 shows how identifiers are associated in an identifier space
of size N = 16 and a replication factor f = 2. Hence, identifiers form
equivalence classes modulo m = 8, i.e., identifier 1 and 9 are in the same
equivalence class since 1 ≡ 9(mod 8). The identifiers in the circles repre-
sent r(i, 1), while the identifiers outside the circles represent r(i, 2). Note
that the association of identifiers is independent from the nodes present
in the system.

Nodes replicate data as follows. In a system without any replication,
each item with identifier i is stored at the responsible node, which we
take to be the successor of item i, but other definitions of responsibility
will work as well1. Symmetric replication is achieved by having the re-
sponsible node of every identifier i storing every item with an identifier
associated with i. Hence, to find an item with identifier i, a request can
be made for any of the identifiers associated with i.

For example, if the identifier 0 is associated with the identifiers 0, 4,
8, and 12, any node responsible for any of the items 0, 4, 8, or 12 has to

1An item with identifier i can be stored at the closest predecessor of i, or at whichever
node is closest in the identifier space.

144 6.2. THE SYMMETRIC REPLICATION SCHEME

ciated with identifier j, then the node responsible for item i should store
both items i and j. Similarly, the node responsible for item j should store
both items i and j.

Formally, each identifier in the system is associated with a set of f
distinct identifiers such that the following always holds: if the identifier i
is associated with the set of identifiers r1, ..., r f , then the identifier rx, for
1 ≤ x ≤ f , is associated with the identifiers r1, ..., r f as well.

Put differently, the identifier space is partitioned into N
f equivalence

classes such that identifiers in an equivalence class are all associated with
each other. Any such partition will work, but for simplicity we use the
congruence classes modulo m, where N is the size of the identifier space
and m = N

f for f replicas.

We now explain how each identifier i is associated to f other iden-
tifiers to achieve replication degree f . Let F = {1, ..., f}, then iden-
tifier i is associated to the f different identifiers given by the function
r : I ×F → I defined as:

r(i, x) = i ⊕ (x − 1)
N

f

Figure 6.2 shows how identifiers are associated in an identifier space
of size N = 16 and a replication factor f = 2. Hence, identifiers form
equivalence classes modulo m = 8, i.e., identifier 1 and 9 are in the same
equivalence class since 1 ≡ 9(mod 8). The identifiers in the circles repre-
sent r(i, 1), while the identifiers outside the circles represent r(i, 2). Note
that the association of identifiers is independent from the nodes present
in the system.

Nodes replicate data as follows. In a system without any replication,
each item with identifier i is stored at the responsible node, which we
take to be the successor of item i, but other definitions of responsibility
will work as well1. Symmetric replication is achieved by having the re-
sponsible node of every identifier i storing every item with an identifier
associated with i. Hence, to find an item with identifier i, a request can
be made for any of the identifiers associated with i.

For example, if the identifier 0 is associated with the identifiers 0, 4,
8, and 12, any node responsible for any of the items 0, 4, 8, or 12 has to

1An item with identifier i can be stored at the closest predecessor of i, or at whichever
node is closest in the identifier space.

144 6.2. THE SYMMETRIC REPLICATION SCHEME

ciated with identifier j, then the node responsible for item i should store
both items i and j. Similarly, the node responsible for item j should store
both items i and j.

Formally, each identifier in the system is associated with a set of f
distinct identifiers such that the following always holds: if the identifier i
is associated with the set of identifiers r1, ..., r f , then the identifier rx, for
1 ≤ x ≤ f , is associated with the identifiers r1, ..., r f as well.

Put differently, the identifier space is partitioned into N
f equivalence

classes such that identifiers in an equivalence class are all associated with
each other. Any such partition will work, but for simplicity we use the
congruence classes modulo m, where N is the size of the identifier space
and m = N

f for f replicas.

We now explain how each identifier i is associated to f other iden-
tifiers to achieve replication degree f . Let F = {1, ..., f}, then iden-
tifier i is associated to the f different identifiers given by the function
r : I ×F → I defined as:

r(i, x) = i ⊕ (x − 1)
N

f

Figure 6.2 shows how identifiers are associated in an identifier space
of size N = 16 and a replication factor f = 2. Hence, identifiers form
equivalence classes modulo m = 8, i.e., identifier 1 and 9 are in the same
equivalence class since 1 ≡ 9(mod 8). The identifiers in the circles repre-
sent r(i, 1), while the identifiers outside the circles represent r(i, 2). Note
that the association of identifiers is independent from the nodes present
in the system.

Nodes replicate data as follows. In a system without any replication,
each item with identifier i is stored at the responsible node, which we
take to be the successor of item i, but other definitions of responsibility
will work as well1. Symmetric replication is achieved by having the re-
sponsible node of every identifier i storing every item with an identifier
associated with i. Hence, to find an item with identifier i, a request can
be made for any of the identifiers associated with i.

For example, if the identifier 0 is associated with the identifiers 0, 4,
8, and 12, any node responsible for any of the items 0, 4, 8, or 12 has to

1An item with identifier i can be stored at the closest predecessor of i, or at whichever
node is closest in the identifier space.

Replication

• Join and Leave Algo
CHAPTER 6. REPLICATION 147

Algorithm 25 Symmetric replication for joins and leaves

1: event n.JoinReplication() from m
2: sendto succ.RetrieveItems(pred, n, n)
3: end event

4: event n.LeaveReplication() from m
5: sendto n.RetrieveItems(pred, n, succ)
6: end event

7: event n.RetrieveItems(start, end, p) from m
8: for r := 1 to f do
9: items[r] := ∅

10: i := start
11: while i ̸= end do
12: i := i ⊕ 1
13: items[r][i] := localHashTable[r][i]
14: end while
15: end for
16: sendto p.Replicate(items, start, end)
17: end event

18: event n.Replicate(items, start, end) from m
19: for r := 1 to f do
20: i := start
21: while i ̸= end do
22: i := i ⊕ 1
23: localHashTable[r][i] := items[r][i]
24: end while
25: end for
26: end event

CHAPTER 6. REPLICATION 147

Algorithm 25 Symmetric replication for joins and leaves

1: event n.JoinReplication() from m
2: sendto succ.RetrieveItems(pred, n, n)
3: end event

4: event n.LeaveReplication() from m
5: sendto n.RetrieveItems(pred, n, succ)
6: end event

7: event n.RetrieveItems(start, end, p) from m
8: for r := 1 to f do
9: items[r] := ∅

10: i := start
11: while i ̸= end do
12: i := i ⊕ 1
13: items[r][i] := localHashTable[r][i]
14: end while
15: end for
16: sendto p.Replicate(items, start, end)
17: end event

18: event n.Replicate(items, start, end) from m
19: for r := 1 to f do
20: i := start
21: while i ̸= end do
22: i := i ⊕ 1
23: localHashTable[r][i] := items[r][i]
24: end while
25: end for
26: end event

Replication

• Lookup and Insertion

148 6.2. THE SYMMETRIC REPLICATION SCHEME

Algorithm 26 Lookup and item insertion for symmetric replication

1: event n.InsertItem(key, value) from app
2: for r := 1 to f do
3: replicaKey := key ⊕ (r − 1) N

f

4: n.Lookup(replicaKey,AddItem(replicaKey, value, r))
5: end for
6: end event

7: procedure n.AddItem(key, value, r)
8: localHashTable[key][r] := value
9: end procedure

10: event n.LookupItem(key, r) from app
11: replicaKey := key ⊕ (r − 1) N

f

12: Lookup(replicaKey,GetItem(replicaKey, r))
13: end event

14: procedure n.GetItem(key, r)
15: return localHashTable[r][key]
16: end procedure

Replication

• Symmetric replication scheme
• Symmetric replication enables an application to make parallel lookups to

exactly k replicas of an item, where k ≤ f if the replication degree is f .
• to speed up the lookup process

• a join or a leave only requires the joining or leaving node to exchange data
with its successor prior to joining or leaving.

Replication

• Other replica placement schemas
• Multiple Hash Functions: hash key with f hash functions
• Successor lists: store at the f closest successors
• Leaf sets: store on !/2 closest successors and !/2 closest predecessors142 6.1. OTHER REPLICA PLACEMENT SCHEMES

Figure 6.1: A system populated with nodes 0, 2, 3, 5, 6, 8, and 10 as indi-
cated by the dark circles. Assuming a replication factor of 3, the figure
shows that every data item is stored with its three closest successors. Put
differently, every node stores the items it is responsible for and it repli-
cates all data items stored on its two closest predecessors, as indicated
by light circles. Hence, node 5 stores all items in the range [4, 5] and it
replicates all items stored on node 3 and node 2.

The coordinating node might however fail or leave the system, making it
necessary to use an algorithm that runs periodically. Many implementa-
tions, such as Bamboo [15], use an epidemic algorithm, where each node
sends a message to its neighbors whenever it detects a change, leading
to f 2 messages for each update or time interval in the case of a periodic
algorithm, given a replication degree of size f .

Moreover, any request to a specific replica, m, must first be routed to
a node in the successor-list, or the leaf set, before it can be forwarded
to m. The reason behind this is that the requesting node has no infor-
mation about the logical identifier of the replicas, while the nodes in the
successor-list, or the leaf-set, maintain such information. In the successor-
list scheme, the first replica routed to will always be the clockwise closest
replica in the successor-list, while in the leaf-set this can be any of the
replicas. In both systems, however, the first replica met is a bottleneck,
which can fail, decelerate the whole operation, or in the case of an adver-
sary, launch a malicious attack.

The leaf-set scheme is, however, better in this respect as it naturally

140 6.1. OTHER REPLICA PLACEMENT SCHEMES

This scheme, however, has a disadvantage. It requires the inverses of
the hash functions to be known to maintain the replication factor. To see
why, assume a replication degree of two, and hence two different hash
functions, H1 and H2, known by all nodes. Assume a node with identifier
10 is storing any items with identifiers in the range [5, 10]. Hence, if an
item with key “course” gets the identifier H1(”course”) = 7, it should be
stored at the responsible node 10. Assume that 10 fails, and that node
12 becomes responsible for the range [5, 12]. Node 12 should then fetch
and store the item with key “course” from the other replica to ensure
a replication degree of 2. To do this, however, 12 needs to find out the
key “course” such that the node responsible for H2(“course”) can be con-
tacted. Hence, the inverse of the hash function H1 is required. Even if
the inverse of the hash functions were available, each single item that the
failed node maintained would be dispersed all over the system when us-
ing different hash functions, making it necessary to fetch each item from
a different node.

If the replication degree is not restored each time there is a failure,
items soon disappear from the system. Assume every node fails with
exponential distribution with intensity λ. Then every node fails after an

average of 1
λ

time units. Given replication degree f , after an expected f
λ

time units all replicas of an item would be lost.

6.1.2 Successor Lists and Leaf Sets

Many systems use successor-list replication or leaf-set replication. These
two schemes do not suffer from the disadvantages of using multiple hash
functions. Successor-list replication [134] works by hashing the key of
each key/value pair in the DHT, such that it receives an identifier from
the identifier space. Each key/value pair is then stored at the f closest
successors of the identifier of the item (see Figure 6.1).

Leaf-set replication [123, 124] is similar to successor-list replication,
but rather than storing an item on its closest f successor’s, the item is

stored on its
⌊

f
2

⌋

closest successors and its
⌊

f
2

⌋

closest predecessors. The

reason for this difference is that routing always proceeds in clock-wise
direction in systems using successor-list replication, while systems using
leaf-set replication route in both clockwise and anti-clockwise direction.

These two schemes fulfill two purposes. One purpose is to replicate

Applications

Applications

• Storage system
• PAST[Storage management and caching in past, a large-scale, persistent peer-to-peer storage utility]
• CFS[Wide-area cooperative storage with CFS]

• Host discovery and mobility
• Web caching and web servers
• Publish/subscribe systems, e.g. FeedTree
• P2P, e.g. BitTorrent

Take-home Message

• A Randomized locking mechanism with node’s and succ’s lock
• to support atomic ring management (JOIN, LEAVE, LOOKUP)

• Routing maintainese
• by additional routing pointer augment.
• With Recursive/Iterative/Transitive/Greedy lookup algo.

• Provide the Algo for Group communication
• Broadcast, Bulk, Bulk own

• Provide the symmetric replication mechanism
• to augment the robustness

References

• ALI GHODSI, Distributed k-ary System: Algorithms for Distributed Hash
Tables.
• https://en.wikipedia.org/wiki/Distributed_hash_table

